Improving the Learning Power of Artificial Intelligence Using Multimodal Deep Learning

نویسندگان

چکیده

Computer paralinguistic analysis is widely used in security systems, biometric research, call centers and banks. Paralinguistic models estimate different physical properties of voice, such as pitch, intensity, formants harmonics to classify emotions. The main goal find features that would be robust outliers will retain variety human voice at the same time. Moreover, model must able on a time scale for an effective variability. In this paper based Bidirectional Long Short-Term Memory (BLSTM) neural network described, which was trained vocal-based emotion recognition. advantage architecture each module consists several interconnected layers, providing ability recognize flexible long-term dependencies data, important context vocal analysis. We explain bidirectional model, its advantages over regular networks compare experimental results BLSTM with other models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

Multimodal Emotion Recognition Using Multimodal Deep Learning

To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models from multiple physiological signals. For unimodal enhancement task, we indicate that the best recognition accuracy of 82.11% on SEED dataset is achieved with shared representations generated by...

متن کامل

the effects of integrating cooperative learning into vocabulary learning of elementary school students

the purpose of the research is to examine if integrating cooperative learning into vocabulary learning helps to increase word recognition of students in an elementary school in iran. it tries to investigate whether cooperative learning approach enables students to improve their language learning. this research used stad (students team achievement division) as a cooperative model in this study. ...

15 صفحه اول

Artificial General Intelligence through Large-Scale, Multimodal Bayesian Learning

An artificial system that achieves human-level performance on opendomain tasks must have a huge amount of knowledge about the world. We argue that the most feasible way to construct such a system is to let it learn from the large collections of text, images, and video that are available online. More specifically, the system should use a Bayesian probability model to construct hypotheses about b...

متن کامل

Emotion Recognition Using Multimodal Deep Learning

To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Epj Web of Conferences

سال: 2021

ISSN: ['2101-6275', '2100-014X']

DOI: https://doi.org/10.1051/epjconf/202124801017